
1	

MPI in ROMS

Kate Hedstrom
Dan Schaffer, NOAA

Tom Henderson, NOAA

January 2011

2	

Outline

•  Introduction to parallel computing
•  ROMS grids

•  Domain decomposition

•  Picky details

•  Debugging story

Parallel Processing

•  Computation/communication – if
you spend more time
communicating, then you should
be running on fewer processors

•  It’s all about the memory – shared
memory vs. distributed memory.
What does your process know?

•  Threads are for shared memory

3	

Shared Memory

4	

Shared Memory

•  All can see all memory, but some is
closer than others

•  System does communication if
needed – handled automatically

•  “First touch” means first process to
write to an address becomes owner
– Each process initializes own tile to become

“owner”
– Read from other tiles, but never write to them

5	

Distributed Memory

6	

Distributed Memory

•  Each processor has its own
memory, perhaps own disk

•  Need a method to communicate
between processes

•  Need to structure your code to
work on these systems

•  Computers with multiple “nodes”
are usually shared within a node,
distributed across nodes

7	

MPI

•  Message Passing Interface (MPI)
is industry standard for how to
code for modern computers

•  Works on many kinds of clusters,
even those with shared memory

•  Library, callable from C, Fortran,
C++, etc.

•  Need to know how to access on
your system

8	

Domain Decomposition

9	

Multi-threaded Job

10	

MPI Job

11	

12	

ROMS
•  Regional Ocean Modeling System
•  Ocean model designed for limited

areas, I also have ice in it
•  Grid is structured, orthogonal,

possibly curvilinear
•  Islands and peninsulas can be

masked out, but are computed
•  Horizontal operations are explicit
•  Vertical operations have an

implicit tridiagonal solve

13	

Sample
Grid

14	

Some History
•  Started as serial, vector f77 code

•  Sasha Shchepetkin was given the job of
making it parallel - he chose SGI
precursor to OpenMP (late 1990’s)

•  Set up tile structure, minimize number
of thread creation/destruction events

•  NOAA people converted it to SMS
parallel library (2001)

•  Finally went to a native MPI parallel
version (2002) - and f90!

•  Sasha independently added MPI

15	

Computational
Grids

•  Logically
rectangular

•  Best parallelism
is domain
decomposition

•  Well understood,
should be easy
to parallelize

16	

Arakawa
Numerical

Grids

17	

The
Whole
Grid

•  Arakawa C-
grid, but all
variables
are dimen-
sioned the
same

•  Computa-
tional
domain is
Lm by Mm

18	

Parallelization Goals
•  Ease of use

– Minimize code changes
– Don’t hard-code number of processes
– Same structure as OpenMP code

•  High performance
– Don’t break serial optimizations

•  Correctness
– Same result as serial code for any number of

processes
•  Portability

– Able to run on anything (Unix)

19	

Domain Decomposition

•  Overlap areas are known as ghost points

20	

Some Numbering Schemes

21	

Mm Not Divisible by 4

•  These
numbers are
in structure
BOUNDS in
mod_param.F

•  ROMS should
run with any
Mm, may be
unbalanced

22	

ROMS Tiling Details

•  Do loop bounds given in terms of
Istr, Iend, etc., from BOUNDS

23	

Simple 1D Decomposition:
Static Memory

24	

Simple 1D Decomposition:
Dynamic Memory

25	

We Chose Dynamic

•  More convenient for location of
river sources, land mask, etc

•  Simpler debugging, even if just
with print statements

•  If we manage it right, there
shouldn’t be extra overhead

•  Sasha chose static, not trusting
new f90 features to be *fast*

26	

Adjacent Dependencies

27	

Add “Halo” Regions for
Adjacent Dependencies

28	

Halo Region Update: Non-
Periodic Exchange

29	

Some Details

•  Number of ghost/halo points
needed depends on numerical
algorithm used
– 2 for most
– 3 for MPDATA advection scheme,

biharmonic viscosity

30	

More Details

•  Number of tiles NtileI and NtileJ
read from a file during initialization

•  Product NtileI*NtileJ must match
number of MPI processes

•  Size of tiles is computed:
ChunkSizeI=(Lm+NtileI-1)/NtileI!
MarginI=(NtileI*ChunkSizeI-Lm)/2!

•  Each tile has a number, matching
the MPI process number!

31	

Still More

•  We use the C preprocessor extensively

•  DISTRIBUTE is cpp tag for the MPI code

•  There are #defines for EASTERN_EDGE,
etc:

#define EASTERN_EDGE Iend.eq.Lm!
 if (EASTERN_EDGE) then!
 :!
#define PRIVATE_1D_SCRATCH_ARRAY
IminS:ImaxS!

•  IminS is Istr-3, ImaxS is Iend+3

32	

2D Exchange - Before

33	

2D Exchange - Sends

34	

2D Exchange - Receives

35	

2D Exchange - After

36	

Notes

•  SMS does the 2-D exchanges all in
one go

•  ROMS does it as a two step
process, first east-west, then north-
south

•  Sasha’s code can do either

•  Routines for 2-D, 3-D and 4-D fields,
mp_exchange2d, etc., exchange up
to four variables at a time

37	

mp_exchange

call mp_exchange2d(ng, tile, &!
 iNLM, 2, Lbi, Ubi, LBj, Ubj, &!
 Nghost, EWperiodic, NSperiodic,&!
 A, B)!
•  It calls

– mpi_irecv
– mpi_send
– mpi_wait

38	

Main Program

•  In MPI, numthreads=1, subs=1, tile=0
!$OMP PARALLEL DO PRIVATE…!
 DO thread=0,numthreads-1!
 subs=NtileX*NtileE/numthreads!
 DO tile=subs*thread,subs*(thread+1)-1!
 call set_data(ng, TILE)!
 END DO!
 END DO!
!$OMP END PARALLEL DO!

39	

Sneaky Bit

•  Loop executed once for MPI
•  globaldefs.h has

#ifdef DISTRIBUTE!

 #define TILE MyRank!
 #else!
 #define TILE tile!
 #endif!
•  MyRank is the MPI process number

40	

set_data

Subroutine set_data(ng, tile)!
 use mod_param!
 implicit none!
 integer, intent(in) :: ng, tile!
#include tile.h!
 call set_data_tile(ng, tile, &!
 LBi, UBi, LBj, Ubj, &!
 IminS, ImaxS, JminS, JmaxS)!
 return!
End subroutine set_data!

Array indices

•  There are two sets of array
bounds here, the LBi family and
the IminS family.
– LBi family for bounds of shared global

storage (OpenMP) or for MPI task view of
the tile – including the halo.

–  IminS family for bounds of local scratch
space, always three grids bigger than tile
interior on all sides.

41	

42	

set_data_tile

•  This is where the real work
happens

•  It only does the work for its own
tile

•  Can have the _tile routine use
modules for the variables it needs
or pass them in as parameters
from the non-tile routine

43	

A Word on I/O

•  The master process (0) does all the
I/O, all in NetCDF

•  On input, it sends the tiled fields to
the respective processes

•  It collects the tiled fields for output

•  We now have an option to use
NetCDF 4 (and MPI-I/O), but it has so
far been sloooooowwww

Error checking

•  ROMS now does error checking on
all I/O related calls
– Master process broadcasts status code
– Other processes listen for status code
– All processes check status and exit if

trouble, passing status back up the line
•  In the bad old days, you could get

processes waiting on the master
when the master had trouble

44	

45	

More Changes

•  MPI communication costs time:
latency + size*bandwidth

•  We were passing too many small
messages (still are, really)

•  Combining buffers to pass up to
four variables at a time can add
up to noticeable savings (10-20%)

46	

New Version

•  Separate mp_exchangeXd for
each of 2d, 3d, and 4d arrays

•  New tile_neighbors for figuring out
neighboring tile numbers (E,W,N,S)
and whether or not to send

•  Each mp_exchange calls
tile_neighbors, then sends up to
four variables in the same buffer

47	

Parallel Bug Story

•  It’s always a good idea to
compare the serial and parallel
runs

•  I can plot the difference field
between the two outputs

•  I can create a differences file with
ncdiff (part of NCO)

48	

Differences after a Day

49	

Differences
after one
step - in a
part of the

domain
without ice

50	

What’s up?

•  A variable was not being
initialized properly - “if” statement
without an “else”

•  Both serial and parallel values are
random junk

•  Fixing this did not fix the one-day
plot

51	

Differences
after a few

steps -
guess

where the
tile

boundaries
are

52	

What was That?

•  The ocean code does a check for water
colder than the local freezing point

•  It then forms ice and tells the ice model
about the new ice

•  It adjusts the local temperature and
salinity to account for the ice growth
(warmer and saltier)

•  It failed to then update the salinity and
temperature ghost points

•  Thinking more, I should have called the
frazil ice code from step3d_t before its
exchange

53	

More…

•  Plotting the differences in surface
temperature after one step failed to
show this

•  The change was very small and the
single precision plotting code couldn’t
catch it

•  Differences did show up in timestep
two of the ice variables

•  Running ncdiff on the first step, then
asking for the min/max values in
temperature showed a problem

54	

Debugging

•  I didn’t know how to use totalview in
parallel then, plus it’s not always
available

•  Find i,j value of the worst point from
the diff file, print just that point -
many fields

•  Enclosing print statements inside if
statements prevents each process
from printing, possibly trying to print
out-of-range values

55	

Conclusions

•  Think before coding - I can’t
imagine the pain of having picked
the static numbering instead

•  It is relatively easy for me to
modify the code without fear of
breaking the MPI parallelism

•  Still, be prepared to check for
parallel bugs

