internal tide drag and self-attraction and loading tide (SAL).

Propose new capabilities for ROMS algorithms

Moderators: arango, robertson

Post Reply
Message
Author
zilu
Posts: 6
Joined: Fri Aug 19, 2022 2:40 pm
Location: Zhejiang University

internal tide drag and self-attraction and loading tide (SAL).

#1 Unread post by zilu »

Hi, dear ROMS developers:
Internal tide drag is a drag to parameterize the tidal conversion from barotropic tide to baroclinic tide at the steep topography, also known as 'internal wave drag' and 'topographic wave drag'. This parameterization has been incorporated into numerous models to improve tidal simulation, such as MOM, ADCIRC (Pringle et al., 2018a, 2018b, 2021), FIO-COM32 (Xiao et al., 2023), GTSM (Wang, 2022), and MPAS-Oceans (Barton et al., 2022). Self-attraction and loading tide (SAL) represents displacement, tilt, and deformation of Earth, which will have impacts on sea levels. The overestimated BT and BC tides in some models may be attributed to the absence of IWD and SAL (Ansong et al., 2015; Buijsman et al., 2016; Luecke et al., 2020).

In addition, internal tide drag is used to elucidate the breaking of internal tides and subsequent turbulence, a phenomenon that has not been adequately addressed by most existing circulation models. At the present, HYCOM stands out as the sole published tides and atmosphere forced circulation model that integrates parameterized internal wave drag and SAL (Arbic, 2022), thereby improving the understanding of the non-internal gravity wave continuum (Müller et al., 2015; Savage et al., 2017) and internal tide nonstationarity (Ansong et al., 2015; Egbert & Erofeeva, 2021).

The application of internal tide drag need to firstly seperate tidal and non-tidal flows (maybe throught filter, 25 h filter in HYCOM). Moreover, this drag is applied on the bottom 500 m of the water column in HYCOM.
I believe that if ROMS adds this two terms, the simulation of tidal dissipation and intrenal gravity wave continuum etc. will be more accurate, especially for the coarse nearshore grid.

To find more information, here are some mentioned references:
Pringle, William J., Wirasaet, D., Suhardjo, A., Meixner, J., Westerink, J. J., Kennedy, A. B., & Nong, S. (2018b). Finite-Element barotropic model for the Indian and Western Pacific Oceans: Tidal model-data comparisons and sensitivities. Ocean Modelling, 129, 13–38. https://doi.org/10.1016/j.ocemod.2018.07.003
Pringle, William J., Wirasaet, D., Roberts, K. J., & Westerink, J. J. (2021). Global storm tide modeling with ADCIRC v55: unstructured mesh design and performance. Geoscientific Model Development, 14(2), 1125–1145. https://doi.org/10.5194/gmd-14-1125-2021
Pringle, William James, Wirasaet, D., & Westerink, J. J. (2018a). Modifications to Internal Tide Conversion Parameterizations and Implementation into Barotropic Ocean Models. Retrieved from https://eartharxiv.org/repository/view/1252/
Xiao, B., Qiao, F., Shu, Q., Yin, X., Wang, G., & Wang, S. (2023). Development and validation of a global 1∕32° surface-wave–tide–circulation coupled ocean model: FIO-COM32. Geoscientific Model Development, 16(6), 1755–1777. https://doi.org/10.5194/gmd-16-1755-2023
Wang, X. (2022). Improving Global Tide and Storm Surge Forecasts with Parameter Estimation. Delft University of Technology. https://doi.org/10.4233/UUID:5F26EDC8-F ... F78FF73902
Barton, K. N., Pal, N., Brus, S. R., Petersen, M. R., Arbic, B. K., Engwirda, D., et al. (2022). Global Barotropic Tide Modeling Using Inline Self‐Attraction and Loading in MPAS‐Ocean. Journal of Advances in Modeling Earth Systems, 14(11), e2022MS003207. https://doi.org/10.1029/2022MS003207
Ansong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F., & Wallcraft, A. J. (2015). Indirect evidence for substantial damping of low‐mode internal tides in the open ocean. Journal of Geophysical Research: Oceans, 120(9), 6057–6071. https://doi.org/10.1002/2015JC010998
Buijsman, M. C., Ansong, J. K., Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., et al. (2016). Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model. Journal of Physical Oceanography, 46(5), 1399–1419. https://doi.org/10.1175/JPO-D-15-0074.1
Müller, M., Arbic, B. K., Richman, J. G., Shriver, J. F., Kunze, E. L., Scott, R. B., et al. (2015). Toward an internal gravity wave spectrum in global ocean models. Geophysical Research Letters, 42(9), 3474–3481. https://doi.org/10.1002/2015GL063365
Savage, A. C., Arbic, B. K., Alford, M. H., Ansong, J. K., Farrar, J. T., Menemenlis, D., et al. (2017). Spectral decomposition of internal gravity wave sea surface height in global models. Journal of Geophysical Research: Oceans, 122(10), 7803–7821. https://doi.org/10.1002/2017JC013009
Luecke, C. A., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H., Ansong, J. K., et al. (2020). Statistical Comparisons of Temperature Variance and Kinetic Energy in Global Ocean Models and Observations: Results From Mesoscale to Internal Wave Frequencies. Journal of Geophysical Research: Oceans, 125(5), e2019JC015306. https://doi.org/10.1029/2019JC015306
Arbic, B. K. (2022). Incorporating tides and internal gravity waves within global ocean general circulation models: A review. Progress in Oceanography, 206, 102824. https://doi.org/10.1016/j.pocean.2022.102824
Egbert, G. D., & Erofeeva, S. Y. (2021). An Approach to Empirical Mapping of Incoherent Internal Tides With Altimetry Data. Geophysical Research Letters, 48(24), e2021GL095863. https://doi.org/10.1029/2021GL095863


Please consider the inclusion of these 2 terms in ROMS. Thank you for your time and consideration.
Please don't hesitate to contact me if you need.

Post Reply